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ABSTRACT: Accurate mean plot values offorest  soilfactors are requiredfor use as independent variables
in site-growth analyses. Adequate accuracy is often difficult to attain because soils are inherently widely
variable.  Est imates  o f  the  variabi l i ty  o f  appropriate  soi l factors  in f luencing growth can be used to  determine
the sampling intensi ty  required to secure accurate mean plot  values.  A study was conducted to determine the
plot  means and variat ion o f  bulk  densi ty ,  tex ture ,  and gross  mois ture  weights  wi thin  plots  associated wi th  the
longleafpine (Pinus  palust r is  Mill.)f orest  type in south Alabama. Included in the s tudy were three difSerent  so i l
series  (Troup,  Nor$olk,  and Esto),  at  each o f  three topographic posi t ions ( lower,  mid,  and upper s lope) .  Soi l
texture was the most variable among the properties studied and gross moisture weights the least variable.
Results  provide a means o f  es t imat ing  fores t  so i l  sampl ing in tens i ty  for  use  in  s i te  growth analyses . South. J.
Appl.  For.  28(1):5-l  1 .
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B,etore site evaluation schemes can be of practical value to
forestry, the degree of variability of forest soils and the
accuracy of mean plot values for soil factors must be determined
(Mader 1963).  This is  necessary,  as est imates of soil  moisture
and/or si te productivity are only as accurate as the plot  mean
values of the independent soil variables on which they are
based. The desired accuracy and precision can be difficult  to
obtain because forest  soi ls  often lack uniformity,  even within
taxonomic units .  The few at tempts made towards a  solut ion to
this problem have indicated that soil factors affecting tree
growth typically vary widely within a study area, greatly
reducing the precision of site index estimation based on soil
type. Accurate mean plot values of soil  factors can be obtained
with statistically sufficient replication but, due to the high
degree of  variabil i ty of  forest  soi ls ,  i t  may not  be physical ly or
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economically feasible to sample and analyze the large number
of plots or subplots required. Moreover, differences in
variability among soil factors necessitate different sampling
intensit ies to obtain the same levels of  precision and accuracy
for each factor.

Mader and Owen (196 1 ), Clutter and Ike (1962),  and Ike
and Clutter (1968) discuss problems associated with soil
variabil i ty and suggest  approaches and analyses that  might  be
employed.  They suggest  sampling soi l  factors  in duplicate for
each study site and analyzing components of variance to
determine within- and among-plot variation of means, in
order to est imate the sampling intensi t ies  required to achieve
precision targets. Since this time, Mroz and Reed (1991)
presented a theoretical application of these ideas, but we
found only two studies,  both out  of  the Northeast ,  report ing
actual  applications to forest  soils .  Mader (1963) confirmed the
importance of  soi ls  variabi l i ty data in planning future surveys
and identified the need for more efficient soil sampling
methods,  part icularly with respect  to quantifying relat ionships
between soils and tree growth. Mollitor et al. (1980) studied
components of variance within and between plots for a number
of soil parameters on flood-plain soils and concluded that
similar methodology might be used to gain sampling
efficiencies on other  soi ls .

The study reported herein was init iated shortly after  Mader’s
(1963) article was published. In 1966, the Southern Research
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Station (USDAForest  Service) andT.R. Miller Mill Company
established a study to quantify within- and between-plot
variability and their influence on the confidence in estimates
of soil parameters, including bulk density, texture, and water
availability, for soils of the longleaf pine (Pinus  pulustris
Mill.) forest type. Located on the Escambia Experimental
Forest, near Brewton  Alabama, a set of I8 l/IO ac plots cut
across three soil series (Troup, Norfolk, and Esto) and three
slope positions (lower, mid, and upper). The study data also
served to describe the soils in the areas sampled. To our
knowledge, no one has since undertaken the intensive field
sampling and r igorous laboratory analyses necessary to fulf i l l
th is  need in  the  Southeast .

Although considerable t ime has elapsed since these efforts ,
there remains a need to establish sound estimates of soil
physical properties at both small and larger scales. Small-
scale est imates are cri t ical  to growth and yield est imation and
correlation and regression analyses relating soil property
estimates to tree growth. Larger scale estimates are required
for accurate mapping of soil  properties at  the stand and forest
levels. The data reported herein should aid foresters in
optimizing soil samples with respect to spatial variability in
future studies of soils or site index.

Methods
Field Collection

The study was carried out on three soil  series and at  each of
three topographic positions (upper, mid, and lower slope).
The soil  series were the Esto (clayey,  kaolinit ic ,  thermic Typic
Paleudult), the Troup (loamy, siliceous, thermic Grossarenic
Paleudult), and the Norfolk (fine-loamy, siliceous, thermic
Typic Paleudult) .  These soil  series were used because they are
three of the more extensive soil series on the Escambia
Experimental  Forest  that  could be found in three topographic
positions and of three different families. In addition, these
series are representative of soils across the Southeast ,  occurring
in every state with longleaf pine. The conditions of the
longleaf pine stands were fully stocked, free from insect and
disease damage and experienced periodic prescribed fire.

On each soil series-slope position combination, two
replicate l/10  ac plots  were established,  for  a  total  of  18 plots .
At each plot ,  a  soil  pi t  was dug at  a  random location beside or
below, but 6 ft upslope  from, each of two moisture probe
access tube locations. Care was exercised to disturb the
surrounding area as little as possible. The soil profile was
described and each horizon sampled by obtaining two

undisturbed cores and a bulk sample. The two core samples
were removed from the midpoint of the horizon, whereas the
bulk sample of about 500 grams was taken as a vertical slice
through the thickness of the horizon. The core samples were
placed in weighing cans and the bulk samples in plastic freezer
bags for  t ransport  to the laboratory.

Laboratory Procedure
Bulk density values on the undisturbed core samples were

obtained from oven-dry data. The hydrometer method of
Bouyoucos (195 1) was followed for texture analysis.  However,
a major modification was made where sands were separated
from clays by wet sieving, using a 300-mesh sieve, after the
samples had been mechanically dispersed. This eliminated
the sands from the hydrometer cylinder. Silt percentage was
obtained as the difference between the sum of the sand and
clay percentage, and 100%. Table 1 presents the mean values
for the measured soil variables by soil series.

Statistical Analysis
Variables describing soil  properties were averaged across

soil  horizons in each profi le ,  weighted by horizon thickness.
Texture measures were averaged across E, A3, B 1, B21, and
B2 horizons.  Separate A (E, A3) and B (B 1,  B21, B2) averages
were calculated for bulk density and gross moisture weight
variables.  The result ing means were then subjected to analysis
of variance (ANOVA) to separate variance components relating
to each of  the sampling stages.

The sampling stages accounted for included soil  series (S),
slope posit ion(T),  plot  orreplicate (R),  profi le  (P),  and sample
(0.  The original  sampling design was summarized by a l inear
model that accounted for both slope position and the interaction
between slope and soil series (S  x T):

where Yijkl,,, is  the measured soil  property associated with the
ith soil series (S), i = 1.. .3,jth  slope position (T),j  = 1.. .3,  kth
plot (R), k = 1.. . rq lth  profile (P), I= 1.. .ptik,  and mth sample
(E), m = 1.. .nijkl.  Soil series (S) and slope (7) are considered
fixed effects. Plot (R), profile (P), and sample (E> are random,
nested effects; plots are nested within soil series x slope
combinations, profiles within plots, and samples within profiles.

In application of this model to the data, the interaction
between slope position and soil series was not significant in all
cases (P > 0.237). With the STterm removed from the model,
slope position was also found to be insignificant (P > 0.135)
and removed, leading to the simplified version of model (1):

Table 1. Mean and range values for soil variables measured for each soil series (based on n q 24
samples per series).

Soil series
Variable Troup
% Sand 80.8 (56.6-86.6)

Norfolk
69.6 (54.3-82.5)

Esto
48.1 (23.0-78.8)

% Silt
% Clay
Depth to B-horizon (in.)
Bulk density (A-horizon)
Bulk density (B-horizon)

’14.2 (9.2-22.1) 19.1 <i2.8-30.41 33.0 (7.9-55.2)
5.0 (2.7-21.3) 11.3 (1.6-21.9) 18.9 (5.8-34.9)

10.5 (4-20) 10.7 (6-28) 12.5 (633)
1.41 (1.20-1.63) 1.40 (1.21-1.53) 1.45 (1.29-1.61)
1.59 (1.44-1.76) 1.64 (1.50-l .80) 1.60 (I .44-l  83)
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Il;jkl  = p+si +&i)j  +‘(ijjk  +E(ijk)l (2)

where Yijkl is  the measured soi l  property associated with the i th
soil series (S), i = 1. . .3,jth  plot (R), j = 1. . . ri, kth  profile (P),
k = I . . .pij,  and Ith  sample (E), 1= 1 . ..n+

The variance components of (2) were then used to study the
effects of sample size on the estimation precision of (a) soil
series means,  and (b) plot  means.  To do this,  expressions for
the expected mean squares of (2) were combined with the
formulas for the standard errors of series, plot, and profile
means. To illustrate, the expected mean squares of (2) are:

MSR =  CJ;  + no; + pno;  3 (3)

(4)

a n d

where MS = mean square, R, P, and E are as defined above, $
is a variance component, n = the number of samples taken
from a profile, and p = the number of profiles observed in a
plot.  These expected mean squares were generated using the
algorithm outlined by Hicks (1982).

The formulas for the standard errors of series, plot, and
profile means are given by (Steel and Torrie 1980):

(6)

M S P
5 = d-pn

(7)

MSE
sp = d-n

where s  = standard error, S, R, P, n, and p are as previously
defined, and r = the number of plots within a soil series.
Combining (3), (4) and (5) with (6), (7), and (8), respectively,
leads to:

2 M S Rs- =-= sg  +nsz  +pnsi  =&+$+&
s vn rpn rpn rp r

M S P 2 2 2sE  +  ns,  _ sF 2
.2 SPJ-=-=----f-
R

Pn P~Z  pn  p ’

a n d

Ls - MSE - d2
P n n

(9)

(10)

(11)

wheresi,  $, a n d  sg are estimates for c$, $, and 0;. ,
respectively.

Equations (9), (IO), and (11) were used to determine the
optimum al locat ion of  sample s izes,  n,p, and r to minimize the
standard error of a soil series or plot mean. Further, these
equations were used to determine the sample sizes required to
estimate the various soil properties to within +5 % (in some
cases rtl0  %) of the mean 95 times out of 100.

Numerical Example
Applicat ion of  the above formulas is  i l lustrated using the

property, percentage of sand. From analysis of variance of the
collected data and model (2), MSR = 47 1.23,  MSP = 60.15, and
MSE = 10.86. With the existing sample sizes, r= 6,p  = 2, and
n = 2, the application of (6), (7), and (8) give the standard
errors s- =4.43,  S- =3.88,  and S- =2.33.  Then, from the
expecteimean  squkes  [(3), (4), a&  (5)]:

CT;  = MSE = 10.86,

o2  _ MSP-A4SE  60 .15-10 .86
P” =: = 24.64,

n 2

and

0, 2 MSR - MSP 471.23 -60.15= = = 1o2 77
pn 4

Therefore, the variation in percentage sand among samples
within a  profi le  is  approximately 10.86,  among profi les  within
a plot  is  24.64,  and among plots  within a  soi l  ser ies  is  102.77.
Figure 1 is a schematic representation of these different
component variances.

Returning to (9) (lo),  and (1 l), it can be shown that the
standard error for an estimate will be minimized when sampling
effort  is  focused on the highest  level  of  replicat ion;  plots  for
a series mean, profiles for a plot mean. This is reflected in
Table 2, where all possible allocations of the existing sample
are listed with their corresponding standard errors for soil
series and plot  means.  For a soil  series mean, the best  way that
our rpn  = 24 samples could have been apportioned is r = 24,
p=landn=l:

ss = i~+~+!!i!?.$  =2,40

leading to a standard error considerably smaller than the 4.43
achieved with r = 6, p = 2 and n = 2. Similarly, focusing
sampling efforts on the number of profiles maximizes the
precision of a plot mean. Of course, the most efficient allocation
of sample, profile, and plot replicates will always depend on
the relative cost of each of these.

A more practical use of Equations (9) and (10) lies in
determination of the number of soil samples required to
estimate a plot  mean for sand content,  with a 95% confidence
interval of, say, +_  5%. If we assume n = 1, then p can be
determined from (10):

95  % CI = +5 = +t~~,,,,,,,  ,,‘- 1) x .SR
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Figure 1. Schematic view of sample, profile, plot, and soil series variance components in a three-stage
sampling design.

5’ 1=t2 s; + s;
(0.05/2.p-I) x ~

i 1P ’

since n  = 1.
Then, substituting an appropriate value for t,

P=
2.372  x(10.861-24.64) =7  98  -*,

. -
5 ’

Therefore, evaluating eight profiles per plot should yield
plot  means for percent sand that  have a sampling precision of
+ 5%.-

Similarly, the number of plots required to yield equally
precise series means can be computed from Equation (9).
Assuming n  = 1,  and p = 8:

95% CI  =+s =rtt((,,(,,,2 ,,.-,) X”;

52 =t2 24.64 8 x 102.77
(0.05/2,r-I)

xi 10.86 I +
8r 8r 8r

Then, substituting an appropriate value fort,

r =
2.O72x(lO.86+24.64+8xlO2.77)  =184=,9

8~5~

With eight  profi les per plot  and 19 plots ,  a  series mean for
sand content should be estimated with a precision of t-.5%.
Armed with estimates for the different sampling variances,
one can thus design a soil  sample to meet  very specif ic needs.

Results and Discussion
The values listed for .si,  .$ , and .sJ$  in Table 3 estimate

the variances among samples, profiles, and plots within
each soil series (Figure 1), respectively, as these were
installed in this investigation. These values approach what
might be expected in repeated sampling using a similar
protocol. The F-tests for the plot and profile variances (P,,
and P,,, Table 3) provide insight into the efficiency of the
sampling protocol, given the soil conditions encountered.
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Table 2. Possible allocations of 24 soil samples and their corresponding effects on soil series and
profile means for percent sand content. Italic rows indicate allocation leading to the lowest
standard error; bold rows identify the combination used.

2.40
3.17
3.78
4.31
5.21
5.98
1.27

10.21
3.33
4.43
5.31
6.06
7.34

10.26
4.05
5.41
7.41

10.31
4.66
6.23
7.48

10.36
6.55

10.56
8.01

10.75
11.31

Soil series mean
Samples Profiles Plots

n P
1 I 2:

2
2
2
2
2
2
3
3
3
3
4
4
4
4
8
8

1 2
1 2
24

2

4
6
8

1 2
24

2
3
4
6

1 2

2
4
8

3

2
1

1 2
8
6
4

2

1 2
6
4

2

8
4
2

6
3
2

2
1
1

In cluster  or  mult is tage sampling,  the object ive is  to  maximize
within-cluster  \variation  to  minirniae  betweerr-cluster
variation. For efficient series estimates, for example, one
would want to maximize within plot variation (i.e., variation
between profiles) to minimize variation between plots. The
fact that S: was statistically significant (i.e., > 0, P, < 0.05)
for all soil properties but gross moisture weight (0
atmospheres,  A horizon) suggests that  a larger plot  size than
that used (i.e., greater distance between profiles, Figure 1)
may offer some gains in efficiency if series estimation is the
goal. Regardless, the sample protocol used enabled
distinction between soil series in all cases but depth to B,
bulk density (A and B), and gross moisture weight (0
atmospheres, A and B horizons) (Ps<  0.04). Coefficients of
variation were quite small (< 4%) for these insignificant
variables, so it is possible that they are not distinguishing
properties of the soil series studied.

Estimates for somewhat smaller areas (e.g., growth and
yield plots) may require a shift in focus to maximizing
variation within profiles and minimizing variation between.
From this perspective, smaller plots (i.e., minimal distance
between profiles, Figure 1) will likely give the greatest
efficiency. For the properties bulk density (A horizon) and
gross moisture weight  (A horizon),  the distr ibution of  samples
in the protocol used generally provided for elevated between
sample variances ( ss) and relatively small between-profile
variances (Pp > 0.097). This suggests that these properties
were variable at small spatial scales (i.e., within profiles), but

24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24

5.96
4.21
3.44
2.98
2.43
2.11
1.72
1.22
5.48
3.88
3.17
2.74
2.24
1.58
5.32
3.76
2.66
1.88
5.23
3.70
3.02
2.14
5.10
2.94
5.05
3.57

s.or

Plot mean
Samples Profiles

P
P

1
1 2
1 3
1 4

1 6
1 8
1 1 2
I 24
2 1
2 2
2 3
2 4
2 6
2 1 2
3 I
3 2
3 4
3 8
4 1
4 2
4 3
4 6
8 I
8 3

1 2 1
1 2 2
24 1~.._

Total
1

2
3
4
6
8

1 2
24

2
4
6
8

1 2
24

3
6

1 2
24

4
8

1 2
24

8
24
1 2
24
24

largely homogeneous at the plot level. Given similar soil
conditions, futwe applications of this sample design should
generally lead to sound plot  est imates for these variables.  In
contrast, the other properties tended to be less variable at
small spatial scales and more variable between profiles.
Although .$ was generally not greater than approximately
two t imes  SE.,  this serves as a reminder that  variation between
profiles could erode the efficiency of plot-level estimates,
given slightly different conditions.

The data suggest that the texture of these soils might
generally be quantified to within +5%  on plots by sampling
5 to 8 soil profiles (Table 3). The percentage of sand was
the most variable, requiring the higher number of profiles.
For series means of the same precision, between 8 and I9
plots would be required if they were subsampled (with 5
to 8 profiles) and 10 to 24 plots required if they are each
based on a single profile. In contrast, depth to B was
highly variable, requiring a large number of profiles and/
or plots (>30)  to attain precision approaching k 1.1” (fl0
% of the mean). Bulk density in the A horizon requires
approximately seven profiles to attain a plot mean with 95%
confidence limits of rtO.07  gm cmW3  and six such plots to
attain a series mean of similar precision. B-horizon estimates
were somewhat less variable, requiring slightly fewer
samples. Gross moisture weight was the least variable of
the properties studied, typically requiring four to five
profiles per plot for 95% confidence limits equal to f 5%
of the mean plot value. Series estimates require four to
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Table 3. Summary of sampling statistics for the range of soil properties studied.

Characteristic
% Sand
%  Silt
%  Clay
Depth to B (in.)
Bulk density

M.R. @ 0’

M.R. @ 0.10

M.R. @  0.33

M.R. @ 1.0

M.R. @ 3.0

M.R. @ 15.0

Horizon~.______
A,  B
A,  B
A,  B
A
A
B
A
B
A
B
A
B
A
B
A
B
A
B

Samples
s;

~-
10.86
4.28
7.16

10.35
0.0040
0.0015
6.75
2.72

11.26
3.86

10.50
3.76

10.86
4.11

10.55
4.33

10.53
3.86

From analysis of variance* variability among:
Profiles Plots

_I 1 Overall Series Plots Profiles
4~--

24.64
11.30
6.63
6.72
0.0012
0.0011
2.22
1.19
2.36
4.28
2.97
4.74
2.09
5.35
2.21
5.43
1.74
5.58

4
102.77
50.79
33.39
11.49
0.0032
0.0061
1.44
7.91

12.82
19.48
8.76

19.34
5.81

17.94
5.25

17.16
5.13

18.02

~~
66.16
22.13
11.72
11.24

1.42
1.61

126
1 3 3
1 1 8
128
115
126
113
124
112
123
111
1 2 3

p.7 PR PP
0.0004 0.0001 0.000 1
0.0018 0.0001 0.0001
0.0053 0.0001 0.0036
0.6488 0.0161 0.0165
0.4240 0.0154 0.1079
0.5658 0.0001 0.0121
0.2817 0.1993 0.097 1
0.2165 0.0001 0.0535
0.0326 0.0024 0.1817
0.0228 0.0001 0.0014
0.0358 0.0116 0.1234
0.0146 0.0001 0.0006
0.0123 0.0308 0.1982
0.0076 0.0003 0.0006
0.0212 0.0393 0.1817
0.0074 0.0005 0.0007
0.0283 0.0354 0.2277
0.0108 0.0003 0.0003

Based on ANOVA,  number of samples required for estimating
Plot mean Series mean- - - -

Profiles n 95% Plots r Plots r

%  Sand -
..-

A. B
SK si cr(*)++

-3.88
95 U(i)” (I7  = 1) (n=l, p=¶)(n=l, p=l)

5 8 4.43 5 19 24
% Silt A ; B 2.59 5 5 3.10 5
% Clay A, B 2.26 5 5 2.53 5
Depth to B (in.) A 2.44 1.12 5 5 1.70 1.12
Bulk density A 0.0404 0.07 7 0.0283 0.07

B 0.0303 0.08 4 0.0341 0.08
M.R. @ O+ A 1.67 6.28 4 0.84 6.28

B 1.13 6.65 3 1.24 6.65
M.R. @  0.10 A 2.00 5.89 4 1.67 5.89

B I.76 6.38 4 1.94 6.38
M.R. @ 0.33 A 2.03 5.74 5 1.46 5.74

B 1.82 6.28 4 1.94 6.28
M.R. @  1.0 A 1.94 5.64 5 1.26 5.64

B I .93 6.22 4 1.90 6.22
M.R. @ 3.0 A 1.93 5.59 5 1.22 5.59

B 1.95 6.13 4 1.87 6.13
M.R. @ 15.0 A 1.87 5.56 4 1.20 5.56

B 1.94 6.15 4 1 91 6.15.- --.m-p-.-.-
* From model [2],  P$, PR.  and P, are probabiliries  of a greater F-value for Series, Plots,  and Profiles, respectively.
’ Gross  moisture weight  at specified atmospheric pressure.
‘I 95 %  confidence limits specified as a target for future sampling precision (generally -i-  5 or 10% of the mean).
7 P = the sample size in terms of the number of profiles, previotlsly  computed for a plot mean.

11
8

3 9
6
7
3
4
5
5
4
5
4
5
4
5
4
5

13
1 0
92
9
8
4
4
6
6
6
6
5
6
5
6
5
6-

five plots of four to five profiles per plot, or about six
randomly placed profiles for the same degree of precision.
A-horizon estimates tended to be slightly more variable
than B in the data collected. If conventional practice
involves averaging 10 profiles per plot, our results suggest
that this may be somewhat more than necessary and that
efficiencies may be gained by transferring some of this
sampling effort to additional plot assessment.

. Within-plot variation appears to be, for most soil
properties,  of  a magnitude that  would not deter plot-level
correlation and regression analyses.

Mader (1963) and Mollitor et al. (1980) conducted similar
studies in forest  soi ls  of  the Northeast ,  each looking at  a  wide
array of soil properties. With similar sampling designs to
those employed by this  s tudy,  the major  conclusions of  these
studies were consistent  with the above:

. Two profiles per plot are generally insufficient to
satisfactorily estimate most soil properties. in Mader’s
(1963) soils of agricultural origin, estimated sample
sizes suggested for bulk density and texture were similar
to those reported in Table 3, given equivalent levels of
precision (&lo%  with 95% confidence). Flood plain
soils, however, exhibited greater variability, requiring
two to three t imes the number of  samples to achieve the
same precision (Mollitor et al. 1980).

. Variability between plots was greater than variation Mader (1963) also hypothesized that properties of the
wi th in  p lo t s . lower horizons may be more uniform than those at  the surface
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because of less disturbance and effects of microtopography.
While  his  data  did not  support  this  hypothesis ,  ours  did.  In  the
cases of bulk density,  and moisture retention, where separate A-
and B-horizon estimates were obtained, A-horizon estimates
were slightly more variable than B-estimates. Previous
agricultural use on Mader’s soils may have led to greater mixing
of the upper layers and, therefore, more homogeneity than
typical  of  the undisturbed soi ls  s tudied herein.  Moll i tor  e t  a l .
(I 980) found a similar mixing effect in the upper layers of flood
plain soi ls ,  these being more uniform than subsurface soi ls .

The results of this and related studies provide strong evidence
that soil sampling efficiency can be improved through knowledge
of the spatial variability in soils. We assert that, prior to any
significant  evaluation of forest  soils ,  a  prel iminary survey be
undertaken to quantify spat ial  variabil i ty in the soi l  parameters
of  interest .  Such an effort  would undoubtedly amount to a  wise
investment,  for  only with this  prior  information can the larger
survey be designed with optimum and efficient allocation of
samples to address the specif ic  s tudy object ives at  hand.
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